Zusammenfassung
Zur Definition des Obesitas-Hypoventilationssyndroms (OHS) gehören extreme Adipositas
(BMI 30 kg/m2 ), alveoläre Hypoventilation im Wachzustand (PaCO2 > 45 mm Hg, Ausschluss anderer Ursachen der Hypoventilation) und schlafbezogene Atmungsstörungen.
Übergewicht beeinträchtigt die Atmung durch eine restriktive Ventilationsstörung,
durch eine Verminderung der Kapazität der muskulären Atempumpe und durch eine Störung
des Atemantriebs. Die Restriktion alleine reicht zur Erklärung des OHS nicht aus:
Es gibt nur eine schwache Korrelation zwischen Körpergewicht und Ausmaß der Hypoventilation
oder zwischen der Adipositas und der Thorax-Compliance. Adipositas erhöht die Atemarbeit
durch die größere Körpermasse, den erhöhten Sauerstoffbedarf, die reduzierte Zwerchfellbeweglichkeit,
die Einengung der oberen Atemwege und die Sauerstoff-Desaturationen, die zu einem
Missverhältnis von Sauerstoffbedarf und -angebot führen. Zumindest bei einem Teil
der Patienten oder in einem späteren Stadium der Erkrankung kann eine Überbeanspruchung
der muskulären Atempumpe durch eine Veränderung der Schwellenwerte der Chemorezeptoren
vermieden werden, was zur Hyperkapnie führt. Neben diesen Aspekten kommt dem Leptin
Bedeutung in der Pathophysiologie des OHS zu. Beim Menschen korreliert der Leptin-Spiegel
mit der Körperfettmasse. Aufgrund einer Leptin-Resistenz scheint jedoch bei übergewichtigen
Patienten ein relativer Leptin-Mangel im zentralen Nervensystem zu bestehen. Anders
als bei Tieren kann Leptin daher nicht in adäquatem Maße die Ventilation steigern
und eine Hyperkapnie verhindern.
Abstract
The obesity hypoventilation syndrome (OHS) is defined by extreme overweight (BMI 30 kg/m2 ), daytime hypoventilation (PaCO2 > 45 mm Hg, the absence of other known causes of hypoventilation) and sleep-related
breathing disorders. Obesity impairs breathing due to a restrictive ventilatory disorder,
reduction of the capacity of respiratory muscles and diminishment of the ventilatory
response. The restriction cannot serve as the only explanation of OHS because body
weight or compliance on the one hand and hypoventilation on the other hand only correlate
weakly. Obesity increases the work of breathing by greater body mass with its increased
oxygen demand, impaired diaphragmatic mobility, upper airway obstruction, and oxygen
desaturation which result in an inadequacy of oxygen demand and supply. The adjustment
of the chemoreceptors can avoid the overload on the capacity of the respiratory muscles,
at least in a number of patients or in the course of the disease. This disproportion
results in hypercapnia. Furthermore, the level of leptin is an important factor in
the pathophysiology of OHS. The blood level of leptin correlates with the body fat
mass in humans. However, there seems to be a relative leptin deficiency in the brain
in overweight humans. Therefore, in contrast to animals, leptin cannot sufficiently
increase ventilation in man to avoid hypercapnia.
Literatur
1
Berg G, Delaive K, Manfreda J. et al .
The Use of Health-Care Resources in Obesity-Hypoventilation Syndrome.
Chest.
2001;
120
377-383
2
Poulain M, Doucet M, Major G C. et al .
The effect of obesity on chronic respiratory diseases: pathophysiology and therapeutic
strategies.
CMAJ.
2006;
174 (9)
1293-1299
3
Kessler R, Chaouat A, Schinkewitch P. et al .
The Obesity-Hypoventilation Syndrome Revisited. A Prospective Study of 34 Consecutive
Cases.
Chest.
2001;
120
369-376
4
Olson A L, Zwillich C.
The obesity hypoventilation syndrome.
Am J Med.
2005;
118
948-956
5
Piper A J, Grunstein R R.
Current perspectives on the obesity hypoventilation syndrome.
Curr Opin Pulm Med.
2007;
13
490-496
6
Sharp J T, Henry J P, Sweany S K. et al .
The total work of breathing in normal and obese men.
J Clin Invest.
1964;
43
728-739
7
Biring M S, Lewis M I, Liu J T. et al .
Pulmonary physiologic changes of morbid obesity.
Am J Med Sci.
1999;
318
293-297
8
Lazarus R, Sparrow D, Weiss S T.
Effects of Obesity and Fat Distribution on Ventilatory Function. The Normative Aging
Study.
Chest.
1997;
111
891-898
9
Bradley T D, Rutherford R, Lue F. et al .
Role of Diffuse Airway Obstruction in the Hypercapnia of Obstructive Sleep Apnea.
Am Rev Respir Dis.
1986;
134
920-924
10 Rochester D F, Arora N S. Respiratory failure from obesity. In: Mancini M, Lewis
B, Contaldo F (eds). Medical Complications of Obesity. London: Academic Press 1980:
183
11
Suratt P M, Wilhoit S C, Hsiao H S. et al .
Compliance of chest wall in obese subjects.
J Appl Physiol.
1984;
57
403-407
12
Hedenstierna G, Santesson J.
Breathing mechanics, dead space and gas exchange in the extremely obese, breathing
spontaneously and during anaesthesia with intermittent positive pressure ventilation.
Acta Anaesthesiol Scand.
1976;
20
248-254
13
Pankow W, Podszus T, Gutheil T. et al .
Expiratory Flow Limitation and Intrinsic Positive End-Expiratory Pressure in Obesity.
J Appl Physiol.
1998;
85
1236-1243
14
Weiner P, Waizman J, Weiner M. et al .
Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory
muscle performance.
Thorax.
1998;
53
39-42
15
Canoy D, Luben R, Welch A. et al .
Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study,
United Kingdom.
Am J Epidemiol.
2004;
159
1140-1149
16
Jokic R, Zintel T, Sridhar G. et al .
Ventilatory responses to hypercapnia and hypoxia in relatives of patients with the
obesity hypoventilation syndrome.
Thorax.
2000;
55
940-945
17
Pankow W, Hijjeh N, Schuttler F. et al .
Influence of noninvasive positive pressure ventilation on inspiratory muscle activity
in obese subjects.
Eur Respir J.
1997;
10
2847-2852
18
Chapman K R, Himal H S, Rebuck A S.
et al. Ventilatory responses to hypercapnia and hypoxia in patients with eucapnic
morbid obesity before and after weight loss.
Clin Sci (Lond).
1990 Jun;
78
541-545
19
Zwillich C W, Sutton F D, Pierson D J. et al .
Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome.
Am J Med.
1975;
59
343-348
20
Leech J A, Onal E, Baer P. et al .
Determinants of hypercapnia in occlusive sleep apnea syndrome.
Chest.
1987;
92
807-813
21
Krieger J, Sforza E, Apprill M. et al .
Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients.
Chest.
1989;
96
729-737
22
Jones J B, Wilhoit S C, Findley L J. et al .
Oxyhemoglobin saturation during sleep in subjects with and without the obesity-hypoventilation
syndrome.
Chest.
1985;
88
9-15
23
Chan C S, Grunstein R R, Bye P T. et al .
Obstructive sleep apnea with severe chronic airflow limitation. Comparison of hypercapnic
and eucapnic patients.
Am Rev Respir Dis.
1989;
140
1274-1278
24
Berger K I, Ayappa I, Chatr-amontri B. et al .
Obesity hypoventilation syndrome as a spectrum of respiratory disturbances during
sleep.
Chest.
2001;
120
1231-1123
25
Rapoport D M, Garay S M, Epstein H. et al .
Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian
syndrome”.
Chest.
1986;
89
627-635
26
Berthon-Jones M, Sullivan C E.
Time course of change in ventilatory response to CO2 with long-term CPAP therapy for obstructive sleep apnea.
Am Rev Respir Dis.
1987;
135
144-147
27 American Academy of Sleep Medicine .ICSD-2 – International classification of sleep
disorders, 2nd ed.: Diagnostic and coding manual. Westchester, Illinois: American
Academy of Sleep Medicine 2005
28
Schönhofer B, Rosenbluh J, Voshaar T. et al .
Ergometry separates sleep apnea syndrome from obesity-hypoventilation after therapy
positive pressure ventilation therapy.
Pneumologie.
1997;
51
1115-1119
29
Mokhlesi B, Tulaimat A, Faibussowitsch I. et al .
Obesity hypoventilation syndrome: prevalence and predictors in patients with obstructive
sleep apnea.
Sleep Breath.
2007;
11
117-124
30
Lo Y L, Jordan A S, Malhotra A. et al .
Genioglossal muscle response to CO2 stimulation during NREM sleep.
Sleep.
2006;
29
470-477
31
Fogel R B, Malhotra A, White D P.
Sleep. 2: pathophysiology of obstructive sleep apnoea/hypopnoea syndrome.
Thorax.
2004;
59
159-163
32
Pillar G, Malhotra A, Fogel R B. et al .
Upper airway muscle responsiveness to rising PCO2 during NREM sleep.
J Appl Physiol.
2000;
89
1275-1282
33
O'Donell C P, Schaub C D, Haines B. et al .
Leptin Prevents Respiratory Depression in Obesity.
Am J Respir Crit Care Med.
1999;
159
1477-1484
34
Considine R V, Sinha M K, Heimam M L. et al .
Serum immunoreactive-leptin concentrations in normal-weight and obese humans.
N Engl J Med.
1996;
334
292-295
35
Shimura R, Tatsumi K, Nakamura A. et al .
Fat Accumulation, Leptin, and Hypercapnia in Obstructive Sleep Apnea-Hypopnea Syndrome.
Chest.
2005;
127
543-549
36
Phipps P R, Starritt E, Caterson I. et al .
Association of serum leptin with hypoventilation in human obesity.
Thorax.
2002;
57
75-76
37
Yee B J, Cheung J, Phipps P. et al .
Treatment of obesity hypoventilation syndrome and serum leptin.
Respiration.
2006;
73
209-212
Professor Dr. med. Winfried J. Randerath
Institut für Pneumologie an der Universität Witten/Herdecke, Klinik für Pneumologie
und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien
Aufderhöher Straße 169 – 175
42699 Solingen
Email: randerath@klinik-bethanien.de